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Abstract 

In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression 

ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this 

aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption 

(BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon monoxide (CO), 

hydrocarbon (HC) and Soot emissions has been considered. The tests were performed at various injection 

timings, loads and speeds. It is used artificial neural network (ANN) for predicting and modeling the engine 

performance and emission. Multi-objective optimization with respect to engine emissions level and engine 

power was used in order to deter mine the optimum load, speed and injection timing. For this goal, a fast 

and elitist non-dominated sorting genetic algorithm II (NSGA II) was applied to obtain maximum engine 

power with minimum total exhaust emissions as a two objective functions. 

Keywords: Diesel engine, Artificial Neural Network, Multi-objective optimization.

1. INTRODUCTION 

Diesel engines are more powerful and consume 

less fuel per power output than that of gasoline 

engines, which is desirable for trucks and off-road 

engineering applications. Also, today’s diesel engines 

are designed to pass a set of strict emissions 

certification limits. Therefore, being aware of the 

engine’s performance and exhaust emissions for 

possible conditions are very vital. One of the engine’s 

parameter that is highly effective on engine 

performance and emissions is injection timing.     

Several researchers have also reported the 

effectiveness of injection timing on the performance 

and exhaust emissions of diesel engines [1-4]. Payri et 

al. examined a study on the start of injection timing in 

a diesel engine. They stated that retarded fuel 

injection yields very low levels in smoke opacity and 

NOx emissions, but it causes to higher CO and HC 

emissions and BSFC [1]. Aktas and Sekman 

investigated the effects of fuel injection advance on 

the performance and exhaust emissions of a diesel 

engine fueled with biodiesel [2]. The experiments 

were performed under three different injection timing 

at full load. They found when injection timing was 

increased, the engine torque increased and BSFC 

decreased. Also, it was determined that CO and HC 

emissions decreased, while NOx emissions increased. 

Sayin et al. studied the effects of injection pressure 

and timing on the performance and emission 

characteristics of a DI diesel engine using methanol 

(5%, 10% and 15%) blended-diesel fuel were 

investigated [3, 4]. The tests were conducted on three 

different injection pressures and timings at a constant 

engine load and speed. The results indicated that 

BSFC, BSEC and NOx emissions increased as BTE, 

smoke, CO and HC decreased with increasing amount 

of methanol in the fuel mixture. 

Artificial neural networks (ANNs) are used to 

solve a wide variety of problems in science and 

engineering. The predictive ability of an ANN results 

from the training on experimental data and then 

validation by independent data. An ANN has the 

ability to re-learn to improve its performance if new 

available data. A well trained ANN can be used as a 

predictive model for a specific application, which is a 

data-processing system inspired by biological neural 

system. ANN modeling is very useful and efficient 

because the experimental investigations on 

performance and emissions are complex, time 

consuming and costly. Numerous studies have been 
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undertaken to predict the performance and exhaust 

emission characteristics of internal combustion 

engines by using ANNs [5-8]. For example, Parlak et 

al. used ANNs for the modeling of a diesel engine to 

predict specific fuel consumption and exhaust 

temperature [5]. Ghobadian et al. modeled a diesel 

engine using waste cooking biodiesel fuel by ANN. 

They used engine speed, percentage of bio-fuel blend 

as the input variables and torque, BSFC, HC and CO 

as the outputs [6]. Necla Kara Togun et al. predicted 

torque and specific fuel consumption of a gasoline 

engine by using ANN [7]. They developed ANN to 

predict torque and BSFC of a gasoline engine in terms 

of spark advance, throttle position and engine speed. 

Shivakumar et al. have used ANN to prediction of 

performance and emission characteristics of a CI 

engine using WCO. ANN modeling was used to 

predict BTE, BSEC, Texh, NOx, HC and Smoke [8]. 

Profits can be made out of the ANN outputs. For 

example, they can be used for optimization and 

sensitivity analysis. In optimization several objectives 

can be optimized simultaneously as it is called multi-

objective optimization problems (MOPs). These 

objectives often conflict with each other so that 

improving one of them will worsen another. 

Therefore, there is no single optimal solution with 

respect to all the objective functions. Instead, there is 

a set of optimal solutions, known as Pareto optimal 

solutions or Pareto front [9, 10]. 

A comprehensive explanation of the evolutionary 

algorithm methods has been presented in Coello [11]. 

A sharing operation is performed in NSGA to 

maintain the population diversity that, however, 

attracted criticisms for being too sensitive to the 

selection of sharing parameters. Besides, the lack of 

elitism was also a motivation for the modification of 

that algorithm to NSGA-II [12], in which a direct 

elitist mechanism, instead of sharing mechanism, has 

been introduced to enhance the population diversity. 

The Pareto based approach of NSGA-II has been used 

recently in a wide area of engineering. 

 

In this study, an ANN was developed to predict 

exhaust emissions and engine performance of a diesel 

engine. Injection timing, engine speed and engine 

load were used as the input variables and brake 

power, torque, BSFC, Peak Pressure and exhaust 

emissions (CO, CO2, NOx, HC, Smoke) as the 

network outputs. Then multi-objective optimization 

applied to minimize overall emissions level and 

maximize power simultaneously. 

2. Experiment and procedure  

2.1. Engine Specification 

In this study, the experiments were performed on 

an agricultural engine (MT4.244) produced by 

Motorsazan. Details of the engine’s specifications are 

given in Table 1. 

 
Table 1 Test engine Specifications 

Name MT4.244 

Bore × Stroke 100 mm × 127 mm 

Number of Cylinders 4 

Volume Capacity 3.99 Liter 

Cycle 4 stroke 

Aspiration Wastegated  Turbocharger  

Combustion System Fast ram direct injection 

Compression Ration 17.25:1 

Fuel Pump Bosch Rotary with Boost 

control 

Governing Mechanical 

Cooling Water, Belt Driven water pump 

Weight 265 Kg 

Length × Width × Height 678.7mm × 655mm × 748.5mm 

 

2.2. Experimental set up 

The study was carried out in the laboratory on an 

advanced fully computerized experimental engine test 

cell comprising of an eddy current dynamometer, in-

cylinder pressure transducer, exhaust gas analyzer and 

soot meter. The schematic diagram of the 

experimental setup is shown in Fig. 1. 

 

2.3 Experimentation and uncertainty error 

In order to evaluate the performance and 

emissions, the experiments were conducted at four 

various injection timing [8°,4°,2° CA BTDC and 1° 

CA ATDC(-8,-4,-2 and +1 degrees]. The experiments 

were carried out at 1400 rpm (maximum torque 

speed), 1700 rpm and 2000 rpm (maximum power 

speed) and at four various loads (25%, 50%, 75% and 

100%). The atmospheric pressure, charge pressure 

and ambient humidity were recorded regularly during 

the tests. The engine was warmed up for about 30 

min. The experimental data required for the 

evaluation of the performance parameters and 

emissions were recorded after the engine was reached 

steady-state operation, which realized easily by 

observing a constant cooling water temperature. The 

variation in the power, BSFC, in-cylinder peak 

pressure and exhaust emissions of CO2, CO, HC, NOx 

and Smoke were determined for each mentioned 
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operating conditions. It should be noted that all the 

tests were repeated three times. The complete 

experimental data and uncertainties of the engine 

performance and emissions are shown in Table 2 

 

 

 
Fig1. Schematic diagram of experimental setup 
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Table 2 Experimental results and uncertainties of the engine performance and emissions 

Parameter 
Inj. 

timing 

Engine 

Speed 

Engine 

Load 
Power HC CO CO2 NOx Smoke BSFC 

Peak 

Pressure 

Dimension sec rpm % Hp ppm ppm % ppm mg/m3 g/kW.h Bar 

Uncertainty 

Error (%) 
2.86 0.18 1 0.03 3.31 0.16 0.1 0.16 0.14 0.04 0.012 

1 -8 2000 100% 69.11 15 302 11.5 1565 63.44 222 140.88 

2 -8 2000 75% 51.83 17 250 9.2 1102 33.67 228.629 101.02 

3 -8 2000 50% 34.55 12 220 6.8 591 17.78 241.5267 86.90 

4 -8 2000 25% 17.27 7 150 3.2 131 9.6 606.35 68.67 

5 -8 1700 100% 59.28 17 621 10.9 1577 98.63 233.56 134.32 

6 -8 1700 75% 44.46 18 512 8.8 1293 38.12 241.21 100.12 

7 -8 1700 50% 29.64 13 446 6.6 775 18.17 249.23 83.45 

8 -8 1700 25% 14.82 8 333 3 236 12.12 533.91 63.87 

9 -8 1400 100% 49.11 22 878 10.4 1598 309.6 245.73 130.41 

10 -8 1400 75% 36.83 19 780 8.3 1466 43.65 248.13 98.75 

11 -8 1400 50% 24.55 15 650 6.5 862 19.04 269.45 79.86 

12 -8 1400 25% 12.27 10 460 2.8 411 14.68 657.26 58.43 

13 -4 2000 100% 57.80 33 611 11.9 914 76.4 263.81 115.09 

14 -4 2000 75% 43.35 21 555 9.68 638 44.82 271.53 96.16 

15 -4 2000 50% 28.90 15 401 7.45 349 18.16 303.14 82.12 

16 -4 2000 25% 5.78 10 333 3.6 113 14.3 761.31 67.93 

17 -4 1700 100% 52.87 45 777 11.4 1085 143.15 246.89 109.09 
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3. Artificial Neural Network (ANN) 

3.1. Neural Network Design 

ANN is an approach inspired by brain structure 

and tries to simulate the brain processing capabilities. 

Haykin defines a neural network as a massively  

 

     Parallel distributed processor [13]. It has an 

inherent tendency for storing experimental knowledge 

and making it available for use. It resembles the 

human brain in two respects: the knowledge is 

acquired by the network through a learning process, 

and inter-neuron connection strengths known as 

synaptic weights are used to store the knowledge. 

Neural network operates like a ‘‘black box” model, 

and does not require detailed information about the 

system. Instead, it learns the relationship between the

18 -4 1700 75% 39.34 30 643 9.33 823 46.12 259.63 89.81 

19 -4 1700 50% 26.16 19 518 7.1 428 19.03 271.12 79.43 

20 -4 1700 25% 8.01 10 411 3.5 188 14.88 790.54 62.12 

21 -4 1400 100% 46.32 57 933 11.1 1135 225.8 254.34 104.07 

22 -4 1400 75% 34.74 37 823 9 957 49.74 297.21 81.08 

23 -4 1400 50% 23.16 22 708 6.8 608 19.35 323.90 67.23 

24 -4 1400 25% 11.58 11 483 3.3 361 15.2 820.43 55.56 

25 -2 2000 100% 55.29 39 799 12.35 691 108.2 261.12 101.09 

26 -2 2000 75% 41.46 25 601 10.18 508 46.58 271.65 92.87 

27 -2 2000 50% 27.64 19 483 7.77 258 19.96 315.11 78.52 

28 -2 2000 25% 5.52 11 397 4.02 97 14.97 853.81 65.93 

29 -2 1700 100% 49.49 68 871 12.1 739 198.32 267.43 98.40 

30 -2 1700 75% 37.02 37 699 9.81 608 49.33 278.21 81.28 

31 -2 1700 50% 25.63 25 566 7.48 304 21.22 323.09 73.52 

32 -2 1700 25% 4.80 12 454 3.85 146 15.43 878.32 60.49 

33 -2 1400 100% 43.98 95 978 11.9 858 295 296.59 94.92 

34 -2 1400 75% 32.98 54 888 9.5 681 54.75 339.39 74.38 

35 -2 1400 50% 21.99 31 762 7.1 437 23.02 369.98 66.09 

36 -2 1400 25% 10.99 13 498 3.7 308 15.98 907.59 50.02 

37 1 2000 100% 51.73 51 841 13.42 500 152.7 290.53 90.29 

38 1 2000 75% 38.79 32 691 10.66 373 61.95 296.97 87.08 

39 1 2000 50% 25.86 26 588 8.17 242 22.31 334.48 74.27 

40 1 2000 25% 5.17 12 444 4.4 75 15.49 978.31 61.85 

41 1 1700 100% 47.35 86 921 13.1 541 237.43 302.45 88.54 

42 1 1700 75% 35.07 45 765 10.4 444 78.81 313.32 78.63 

43 1 1700 50% 23.32 35 642 7.93 269 25.52 346.15 67.34 

44 1 1700 25% 4.48 14 488 4.1 111 15.92 992.63 55.12 

45 1 1400 100% 41.92 114 1009 12.34 639 391.45 329.95 85.78 

46 1 1400 75% 31.44 64 909 9.85 531 91.88 371.82 73.23 

47 1 1400 50% 20.96 45 818 7.3 379 27.04 404.03 64.65 

48 1 1400 25% 10.48 15 513 3.9 255 16.33 1020.43 48.19 
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Fig2. The architecture of proposed ANN model for the engine.

 

Input parameters and the controlled and 

uncontrolled variables by studying previously 

recorded data, in a similar way that a non

regression might be performed. Another advantage of 

using ANN is their ability to handle large and 

complex systems with many interrelated parameters. 

They simply ignore excess input data that are of 

minimal significance and concentrate instead on the 

more important inputs [14]. 

The learning-algorithm was used back 

propagation (BP), one of the most popular learning

algorithms [15, 16]. Success in the algorithms 

depends on the user dependent parameters learning 

rate and momentum constant. Faster algorithms such 

as conjugate gradient, quasi-Newton, and Levenberg

Marquardt (LM) use standard numerical optimization 

techniques. These algorithms eliminate some of the 

disadvantages mentioned above. In this case model 

was trained with ‘‘Levenberg

optimization” learning algorithm. The Levenberg

Marquardt algorithm is based on approaching second

order training speeds without having t

of Hessian matrix [16]. 

MATLAB 7.0 was applied in all the stages of 

developed model including training and testing of the 

network. In this study ANN having an input layer 

with three neurons for each input factor (Injection 

timing, Engine loads and Engine speeds) and an 

output layer with eight neurons (NOx, Soot, HC, 

CO2, CO, Peak Pressure, Power and BSFC). One of 

the most important tasks in ANN studies is to choose 

the optimal network architecture which is related to 

the activation function and the number of neurons in 

hidden layer. Generally, the trial-and

is used. In this study, the optimal architecture of the 

network was obtained by trying different activation 

function and number of neurons. The performance of 
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parameters and the controlled and 

uncontrolled variables by studying previously 

recorded data, in a similar way that a non-linear 

regression might be performed. Another advantage of 

using ANN is their ability to handle large and 

interrelated parameters. 

They simply ignore excess input data that are of 

ficance and concentrate instead on the 

algorithm was used back 

propagation (BP), one of the most popular learning-

16]. Success in the algorithms 

depends on the user dependent parameters learning 

rate and momentum constant. Faster algorithms such 

Newton, and Levenberg–

Marquardt (LM) use standard numerical optimization 

orithms eliminate some of the 

disadvantages mentioned above. In this case model 

was trained with ‘‘Levenberg–Marquardt 

optimization” learning algorithm. The Levenberg–

Marquardt algorithm is based on approaching second-

order training speeds without having the computation 

MATLAB 7.0 was applied in all the stages of 

developed model including training and testing of the 

network. In this study ANN having an input layer 

with three neurons for each input factor (Injection 

timing, Engine loads and Engine speeds) and an 

er with eight neurons (NOx, Soot, HC, 

CO2, CO, Peak Pressure, Power and BSFC). One of 

the most important tasks in ANN studies is to choose 

the optimal network architecture which is related to 

the activation function and the number of neurons in 

and-error approach 

is used. In this study, the optimal architecture of the 

network was obtained by trying different activation 

function and number of neurons. The performance of 

each network was checked by correlation coefficient 

(R) and is defined as follows: 

The goal is to maximize correlation coefficient to 

obtain a network with the best generalization. R 

values were calculated for many different network 

models. Based on this analysis, the optimal 

architecture of the ANN was constructed as 3

NN and activation function in hidden layer and output 

layer both were ‘logsig’. The architecture of proposed 

ANN model is shown in Fig. 2 

In the present work, 48 patterns were obtain

from the experiments by changing the process 

parameters. Inputs and outputs have been normalized 

in the range of 0–1. Inputs for the ANN (process 

parameters) were the injection timing, engine loads 

and engine speeds and the outputs were shown in the 

Fig. 2 

 

3.2 Evaluation of Results and D

An ANN was developed based on this 

experimental work to predict the missed data and 

avoid spending excessive time running experimental 

tests. The results showed that the training algorithm 

of Back Propagation was sufficient for predicting 

brake power, volumetric efficiency, peak pressure, 

specific fuel consumption and exhaust gas 

components for different engine load, speed and 

injection timing. For this purpose 40 patterns of the 

experimental results were used fo

model and 8 patterns were not applied to the model 

and were used for testing. 

R� � 1 � �∑ 	t� � o���∑ 	o��� �                 
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each network was checked by correlation coefficient 

The goal is to maximize correlation coefficient to 

obtain a network with the best generalization. R 

values were calculated for many different network 

s analysis, the optimal 

architecture of the ANN was constructed as 3–15–8 

NN and activation function in hidden layer and output 

layer both were ‘logsig’. The architecture of proposed 

In the present work, 48 patterns were obtained 

from the experiments by changing the process 

parameters. Inputs and outputs have been normalized 

1. Inputs for the ANN (process 

parameters) were the injection timing, engine loads 

and engine speeds and the outputs were shown in the 

Discussion 

An ANN was developed based on this 

experimental work to predict the missed data and 

avoid spending excessive time running experimental 

tests. The results showed that the training algorithm 

as sufficient for predicting 

brake power, volumetric efficiency, peak pressure, 

fic fuel consumption and exhaust gas 

components for different engine load, speed and 

injection timing. For this purpose 40 patterns of the 

experimental results were used for training the ANN 

model and 8 patterns were not applied to the model 
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The Comparisons of the ANN-predicted results 

and experimental (actual) results are indicated in Figs. 

3 and 4. As mentioned before the criterion R was 

selected to evaluate the networks to find the best 

activation function and number of neuron. Linear 

regression analyses were carried out to investigate the 

network response in more detail. Correlation 

coefficients of 0.9902, 0.993, 0.998, 0.9916, 0.9923, 

0.9951, 0.9921 and 0.9908 were obtained for the HC, 

CO2, CO, NOx, smoke, power, BSFC, peak pressure 

at the training stage. It is clear that the correlation 

coefficients for all output are close to unity indicating 

the good accuracy of the developed model. Thus, this 

ANN model can be used to predict emission and 

performance parameter for diesel engine with 

adequate accuracy.  

 

3.3. Formulation 

Hidden and output layers with ‘log-sigmoid’ 

transfer function were used to predict output. The log-

sigmoid transfer function was: 

Where x is the weighted sum of the input. To 

determine the emission parameters, bsfc, power and 

peak pressure. Equations 3 to 10 in Table 3 were 

derived from ANN. By using these equations 

similarly, performance and exhaust emissions of the 

diesel engine will be calculated.  

Where f� (i = 1, 2, 3... 15) can be calculated using: 

Where �� to ��� calculate as follows: 

 

Where, the constants (Cji) are given in Table 4. 

For LM algorithm with 14 neurons and I, L and N are 

injection timing, speed and load, respectively. It 

should be noticed that in Equations 3-10, When using 

the equations in Table 4, I, N and L values are 

normalized by dividing them by 10, 2100 and 75 

respectively. For outputs HC, CO, CO, NOx, Smoke, 

BSFC and PP values need to be multiplied by  120 , 

1100, 15, 1600, 400, 1050 and 150, respectively. 

 

 

 

 

 

 

Fig3. Comparisons of the ANN-predicted results and experimental (actual) results for Power, BSFC and Peak Pressure at test stage 
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Fig4. Comparisons of the ANN-predicted results and experimental (actual) results for NOx, HC, CO, CO2 and Smoke at test stage 

Table 3 Derived equations from ANN 

Power � 1�1 + e��,..�∗012�.,�∗03��.�,∗042,.5.∗062 ,.�7∗082,.�&∗092,..�∗0:2,.55∗0;2,.5<∗0=��.5�∗01>�,.�<∗0112�.<.∗0132,.��∗0142,.��∗016��.??∗018��.�?� (3) 

Bsfc � 1�1 + e���&.��∗01�,.�,∗032,.&,∗04��.��∗062�..<∗082�.&�∗092,.7<∗0:2,.�7∗0;2 ,.�&∗0=2�.�?∗01>2,.&�∗011�,.?,∗0132�.,5∗0142,.�.∗0162��.&�∗018� �.��� (4) 

PP � 1�1 + e�� ,.,?∗012,.��∗03�,.<�∗042,.�5∗06�,..<∗08�,.?�∗092,.��∗0:2,.�?∗0;2 �.�5∗0=��.�,∗01>�,.�7∗0112�.<7∗0132,.��∗014�,.,<�∗016 �,.5,∗0182,..?� (5) 

HC � 1�1 + e���,.,<.∗01�,.��∗03��.?�∗042 ,.57∗062 ,.5?∗082,.5�∗092 ,.,&∗0:�,.?�∗0;��.77∗0=2�.�,∗01>2�.�<∗0112 ,.7&∗013�,.7.∗0142,.&,∗016�,.��∗018��.7�� (6) 

CO � 1�1 + e���,.��∗012,.�?∗03��.7,∗042,..�∗062,..�∗082,.77∗09  �,.<&∗0:�,.&&∗0; �,.,<�∗0=2�.,�∗01>2�.&.∗0112,..,∗0132,.�,∗0142,.�,,∗016�,.,?∗018�,.7&?� (7) 

CO2 � 1�1 + e���,.�,�∗012,.&�∗03��.5&∗042 �.��∗062 ,.��∗082,.&&∗092,.�&∗0:2,.&.∗0;2,...∗0= �,.<?∗01>2,.��∗0112,.5?∗0132 ,.��∗014�,.&<∗0162�.��∗018�,.�,� (8) 

NOx � 1�1 + e���,.�7∗012�.�7∗032,.,7∗042,..<∗062 �.�,∗082,.5.∗092,.?5∗0:2�.�<∗0;2....∗0=��.�&∗01>�,.�&∗0112�.5,∗0132�.�7?�∗0142,.�<∗0162�.5<∗018��.�?� (9) 

Smoke � 1�1 + e���,..,∗012,.,.∗03�&.?&∗042,.��∗062�.<&∗082�.�?∗09��.,<∗0:2,.5?∗0;2 ,.<?∗0= ��..7∗01>2�.5�∗0112 �.5&∗013��.&�∗0142�.��∗0162,.&�∗018 �&.??� 
 

(10) 

R² = 0.9757 
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4.  Multi-objective optimization 

Multi-objective optimization, which is also called 

multi criteria optimization, has been defined as finding 

a vector of decision variables satisfying constraints to 

give acceptable values to all objective functions. In 

general, it can be mathematically defined as Find the 

vector J∗= [��∗ , ��∗ , … , �K∗  ] to optimize: 

Subject to m inequality constraints, 

and  p equality constraints: 

where X∗ ∈ RN is the vector of decision or design 

variables and F�x� ∈ RP is the vector of objective 

functions, which must each be either minimized or 

maximized [17].  

A variety of approaches can be used to solve this 

problem. One popular approach is to combine those 

objectives into a single composite objective so that 

traditional mathematical programming methods can 

be applied. To this end, some sort of value or utility 

function needs to be identified according to the 

preference of one or multiple decision-makers. The 

simplest method is to assume independent preferences 

among those objectives and apply an additive utility 

function. On the other hand, instead of transforming 

the original problem into a single-objective one, the 

Pareto optimum concept based on non-dominance can 

be utilized. Maheshvari et al. used traditional method 

to optimize IC engine parameters and transformed the 

original problem into a single-objective one [18]. 

In many MOPs, the considered objectives are in 

conflict with each other. Therefore, it is impossible to 

gain a solution that optimizes each objective function 

concurrently. The answer such problems are a set of 

solutions, called Pareto optimal. But, before defining 

this term, the concept of dominant must be 

introduced. Assume that x1 and x2 are vectors in n-

dimensional space and f is a function.  x1 dominates  

x2 if the following conditions satisfy: 

 Pareto optimal is a solution which is not 

dominated by any other solution in the solution space. 

The main characteristic of the Pareto optimal solution 

is that it cannot be improved with respect to an 

objective unless deteriorating at least one other 

objective. A set of all these non-dominated solutions 

is called Pareto optimal set and the corresponding 

objective function values in the objective space are 

the Pareto front. Finding the Pareto front, which 

consists of Pareto optimum solutions, is the major 

goal in MOPs. 

In order to deal with this multi-objective 

optimization problem, a multi-objective evolutionary 

algorithm is proposed. To generate a Pareto-optimal, 

the powerful multi-objective evolutionary algorithm, 

Non-dominated Sorting Genetic Algorithm (NSGA-

II), was used. The NSGA-II makes use of a fast non-

dominated sorting approach, elitist strategy, and a 

crowded comparison operator to create Pareto-

optimal solutions. First a random parent population is 

created. Binary tournament selection, recombination, 

and mutation operators are used to create a child 

population. Then, a combined parent and child 

population is formed. This allows parent solutions to 

be compared with the child population, thereby 

ensuring elitism. The population is sorted according 

to non-domination. The new same size parent 

population is formed according to non-domination 

ranks and crowded comparison operator. This 

population is now used for selection, crossover and 

mutation to create a new population [19]. 

5. Pareto optimization of power and overall 

emissions using neural network models 

In order to gain optimal power and overall 

emissions, the neural network models obtained in the 

previous sections are now used in a multi-objective 

optimization procedure. The two objectives in this 

study are overall engine exhaust emissions and power 

to be simultaneously optimized with respect to the 

design variables, namely injection timing, engine 

speed and engine load. The overall exhaust emission 

was defined as below [18].  

The corresponding Pareto front of two objectives 

power and overall emissions has been shown in Fig. 

5. It is clear from this figure that choosing appropriate 

values for engine speed, load and injection timing for 

obtaining a better value of one objective would cause 

a worse value of another objective.  

Four sections, A, B, C and D, can be seen from 

Fig. 5 that illustrate important optimal design facts. 

Area between sections A and B exhibits an increase 

of power with a small change in overall emissions 

according to its slip 1.98. Area between sections C 

and D exhibits a significant increase of overall 

emission while power (slip 8.86) is not increases 

���� � [R����, R����, … , RU���]W , �13� 
Y!��� ≤ 0         \ � 1 ]^ _ �14� 
ℎb��� � 0           c � 1 ]^ d �15� 

fR!���� ≤ R!����  �∀\ � 1 , … , h�ijkR!���� < R!����  �∃\ � 1 , … , h�n �16� 

pq�riss �_\tt\^jt� %p�%p�uv� + "p"puv�+ "p�"p� uv� + w"w"uv�+ x_^h�x_^h�uv� 
       �17� 
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significantly. Therefore, changing the injection 

timing, engine speed and engine load as decision 

variables should be in such a way that power and 

overall emission lies between sections B and C of the 

Pareto optimal front which has a slip of 3.45.  

As shown in Fig. 5, the optimal result was 

selected and has the coordinates of (50,143). This 

point corresponds to Power of 50 HP and overall 

emissions of 143. In other words, with the engine 

speed 1943 rpm, load of 240.82 N.m. and injection 

timing -7.8 ( 7.8 bTDC), the best solution was 

obtained

 

 

Fig5. Optimization result (Pareto front) 

 

Table 4 The weights and biases between input layer and hidden layer for Eqs. (3) to (10). 

�! � "�! × $ + "�! × % + "&! × ' + "�! 
i "�! "�! "&! "�! 
1 -8.0268 2.5952 12.6505 -3.1785 

2 -4.2729 -27.6237 10.7672 19.6299 

3 -3.5191 0.59379 -7.7725 4.6328 

4 1.8233 7.9999 22.3282 -13.0801 

5 -10.5491 -34.8195 0.10597 29.4396 

6 11.2742 27.1059 2.1041 -23.5179 

7 -8.5576 26.9746 3.7775 -33.653 

8 -3.4063 34.4069 7.185 -34.2456 

9 -7.0547 -6.9283 6.3134 -5.3252 

10 -7.7067 -36.7574 4.8087 22.6632 

11 12.9156 30.3336 -1.6584 -17.4314 

12 -8.7067 -33.0747 6.3342 18.8497 

13 13.5601 -11.4703 -0.19769 18.4414 

14 0.0089625 -47.7151 5.3141 27.2334 

15 -1.3715 -19.8066 11.6078 -3.2733 

 

6. Conclusion 

In this investigation, It is assessed the influence of 

three key factors of engine loads, speeds and injection 

timing. After getting data from experimental tests by 

varying the engine speed, load and injection timing,  

 

using ANN to modeling the engine to predict the 

performance and emissions for all operating 

conditions. This reduces the experimental efforts and 

hence can serve as an effective tool for predicting the 

performance of the engine and emission 

characteristics under various operating conditions. It 

is considered that the ANN results are very good and 
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R values in this model are very close to one. Results 

showed Correlation coefficients of 0.9902, 0.993, 

0.998, 0.9916, 0.9923, 0.9951, 0.9921 and 0.9908 

were obtained for the HC, CO2, CO, NOx, smoke, 

power, BSFC, peak pressure at the training stage  

respectively. Then, by using NSGA II, the best 

solution was obtained to optimize the two objective 

functions minimum overall exhaust emissions and 

maximum engine power.  
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